Are Deep Neural Networks SMARTer than Second Graders?
\{cherian, kpeng, slohit\}@merl.com\} \{k2smith, jbt\}@mit.edu

Problem:
Can a state-of-the-art (deep) machine learning mode solve the simple puzzle below?

Question: Bird Bobbie jumps on a fence from the post on the left end to the other end. Each jump takes him 4 seconds. He makes
jumps ahead and then 1 jump back. Then he again makes 4 jumps ahead and 1 jump back, and so on. In how many seconds can Bobbie get from one end to the other end?
Answer Options: A: 64 B: 48 C: 56 D: 68 E: 72

Contributions:

(i) We introduce SMART: Simple Multi-modal Algorithmic

Reasoning Task for evaluating the abstraction, deduction, and generalization abilities of neural networks in solving visuo-linguistic puzzles designed specifically for first/second grade children.
(ii) To ensure the puzzles are solvable by kids, we take them from the Math Kangaroo (MK) Olympiad intended for second graders.
(iii) We introduce the SMART-101 dataset built from 101 unique MK puzzles to evaluate the progress in multimodal artificial general intelligence.
(iv) We propose programmatic augmentation to replicate each MK puzzle to arbitrary number of instances for training large machine (v) We analyze the generalization performances of state-of-the-art We analyze the generalization performances of state-of-the-art
vision and language pretrained models and show that they are no better than second grader performances (yet).

SMART-101 Statistics:

We plot the distributions of: (a) 8 primary algorithmic skills needed to solve the ${ }^{(\text {(e) }} 10$ puzzles, (b) compositional reasoning skills, (c) puzzles that need image and/or question reasoning, (d) puzzles
that need methods to read text within images (e.9., needing OCR abilities).

SMART Programmatic Puzzle Augmentations:

We use computer programs to replicate each puzzle; the arguments of these programs can be randomly sampled to produce various augmentations of the respective puzzze; e.e.,., change question, change appearances, etc. while keeping the underlying solution algor mine same, We can contra

SMART Puzzle Categories:

Question: Which objectis inked to the hat?
and
Bptions: A: flower
B: diss A book
D. drink E: ball

Question: We want towalk foom N to E
along the ines and pick tup the efters along the lines and pick up the eleters
NONDPHERENE in the correct order.
The The length of the shortest walk in units is
the elength of each grid is 1 unitit:? he length of each grid is 1 initi):
totions: A: 50 B: 44 C: $46 \mathrm{D}: 47 \mathrm{E}: 45$

moves a total
he end up?
Options: A B
 filwer is concealed. The sums of the
values ont tho tiver are idenical
What is the oncoealee value? Values on the two towers are identical.
What is the concealed value?
Options: $\mathrm{A}: 19 \mathrm{~B}: 8 \mathrm{~B}: 6 \mathrm{D}: 11 \mathrm{E}: 5$

Question: Sandra made a structure Question: Sancra made a structure
usint some red brick and
bricks. How tow many of these blue brick

SMART Meta-Learning Reasoning Architecture:

Our architecture allows evaluating varied image and
backbone networks for solving the SMART puzzles.
We evaluate ViTs, ResNets, MAE, etc. for image an
$B E R T / G P T / G l o V e ~ f o r ~$ language backbones. We also compare to vision-and-
anguage models such as language model.
CLIP \& FLAVA.

Experiments and Results:

			${ }_{18521}^{1821}$	21.821.			${ }_{4}^{7.821 .8}$	21.4	1
Unitem lasid	, 7,74250.0	8.0an20			${ }_{\text {g }}^{6942500}$	Stand			
		${ }_{\substack{3,353.1 \\ 4820.9}}$		${ }_{2}^{9.65220}$		${ }^{\text {jnl2 }}$	${ }_{\text {8, }}^{\text {8,5165 }}$		
		${ }_{\substack{4 \\ 5.77247 \\ 5}}$	${ }_{\text {5 }}^{5.6093}$	${ }_{4}^{1142415}$		${ }_{\substack{103238 \\ 888213}}^{1}$	${ }^{11191673}$	${ }_{\text {173 }}^{1739191}$	
$\underset{\substack{\text { clup } \\ \text { fund }}}{\text { chen }}$	${ }_{\substack{911 / 55 \\ 83202}}$	${ }_{\substack{194185 \\ 4022}}$	${ }_{\substack{7,14306}}^{4.15}$	${ }_{\substack{1424214 \\ 9.503}}^{1}$	${ }_{\substack{7.15186 \\ 3 \\ \hline 122}}$	${ }_{\substack{8.89222}}^{190320}$	${ }_{\text {a }}^{12.418 .8}$	${ }^{1909}$	
	${ }_{\substack{1099183 \\ 120228}}$	$\underbrace{}_{\substack { 6961588 \\ \begin{subarray}{c}{681213{ 6 9 6 1 5 8 8 \\ \begin{subarray} { c } { 6 8 1 2 1 3 } }\end{subarray}}$	${ }_{\text {coser }}^{12820.8}$			${ }_{\substack{1,98679 \\ 151159}}$	${ }^{1341717}$	${ }^{0.0012}$	
Fews Stos Split (f) Experimest, $m=10$									
		$\underset{\substack{112258.8 \\ 8327}}{\substack{\text { che }}}$	${ }_{\substack{180876 \\ 112033}}$	${ }_{\text {che }}^{1927192}$	ciplich	${ }_{\substack{4.88312 \\ 195832}}$	${ }_{\substack{18.7558 \\ 185254}}$	cincin	${ }_{13,623}^{15,25}$
Coted		${ }_{\substack{8.971215 \\ 3 \\ 3 \\ 5120}}$		${ }^{2,721212}$	(in)				(17351.6
	${ }_{2}^{23}$	$\underbrace{33,74}$		${ }^{1671786}$			${ }_{2}^{245}$		
Suribet	$\substack { 20,5 \\ \begin{subarray}{c}{20{ 2 0 , 5 \\ \begin{subarray} { c } { 2 0 } } \\{\substack{\text { a }}} \\{\hline} \end{subarray}$		12,52,	cisilis		边 0.7182	,	120,	
							28329		
	$\xrightarrow[\substack{4.9 .956 .1 \\ 4.054}]{ }$	$\xrightarrow{351 / 4.3}$		${ }_{2}$	${ }_{\substack{23,435.1 \\ 13725}}^{2}$				$\underbrace{3,54}_{2}$
	${ }_{\substack{466578 \\ 460565}}^{4}$	${ }_{\substack{38.0459 \\ 302485}}$						${ }_{4}^{4.855}$	
	${ }_{\substack{480559 \\ 48593}}^{4}$	${ }_{\substack{46.1853,1 \\ 46.15}}^{4}$							428
$\underset{\substack{\text { clup } \\ \text { Fuva }}}{ }$	${ }_{4}^{4717 / 1558,1}$	${ }_{\substack{182293 \\ 20229}}^{10 .}$	(exi.an1.1			${ }_{\text {20, }}^{2.79428}$		${ }_{\substack{29936.1 \\ 38342}}^{2}$	
ver Ceneral									
			${ }_{\substack{0.0168 \\ 10.60 .8}}^{\substack{\text { a }}}$	${ }_{\substack{0.9011 .6}}^{\substack{\text { gila }}}$	$\underbrace{\substack{\text { a }}}_{\substack{0.4173 \\ 3,4183}}$			${ }_{\substack{0.0150 \\ 255509}}^{\substack{\text { a }}}$	

